Experimentally Feasible Quantum Erasure-Correcting Code for Continuous Variables
نویسندگان
چکیده
منابع مشابه
Perfect Quantum Error Correcting Code.
We present a quantum error correction code which protects a qubit of information against general one qubit errors which maybe caused by the interaction with the environment. To accomplish this, we encode the original state by distributing quantum information over five qubits, the minimal number required for this task. We give a simple circuit which takes the initial state with four extra qubits...
متن کاملA Non-MDS Erasure Code Scheme for Storage Applications
This paper investigates the use of redundancy and self repairing against node failures indistributed storage systems using a novel non-MDS erasure code. In replication method, accessto one replication node is adequate to reconstruct a lost node, while in MDS erasure codedsystems which are optimal in terms of redundancy-reliability tradeoff, a single node failure isrepaired after recovering the ...
متن کاملEfficient erasure correcting codes
We introduce a simple erasure recovery algorithm for codes derived from cascades of sparse bipartite graphs and analyze the algorithm by analyzing a corresponding discrete-time random process. As a result, we obtain a simple criterion involving the fractions of nodes of different degrees on both sides of the graph which is necessary and sufficient for the decoding process to finish successfully...
متن کاملSimulation of Quantum Error Correcting Code
This study considers implementations of error correction in a simulation language on a classical computer. Error correction will be necessarily in quantum computing and quantum information. We will give some examples of the implementations of some error correction codes. These implementations will be made in a more general quantum simulation language on a classical computer in the language Math...
متن کاملExperimentally feasible measures of distance between quantum operations
We present two measures of distance between quantum processes which can be measured directly in laboratory without resorting to process tomography. The measures are based on the superfidelity, introduced recently to provide an upper bound for quantum fidelity.We show that the introducedmeasures partially fulfill the requirements for distance measure between quantum processes. We also argue that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2008
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.101.130503